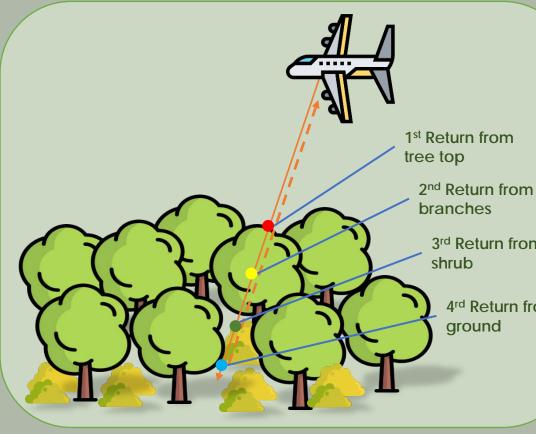


Introduction


Forests are the second largest land cover in the world, occupying 27.7% of the planet's continental surface [1]. These areas are the main carbon pools and therefore play a crucial role in regulating the terrestrial carbon cycle and global warming processes [3,4].

THE GOAL: To model and spatialize Sequestered Carbon in Mediterranean Forests (Catalonia, Spain), through a Random Forest algorithm, using LiDAR-PNOA data and topographic metrics as independent variables

The diversity in plant formations that the carbon sink capacity is also very vide. For this reason, it is **complex to** quantify carbon stocks in whole agroforested areas [3].

Airborne LiDAR (Light Detection And anging), also known as ALS, provides high accurate **3D point** clouds of vegetation and terrain and allows forest inventory and mensuration by means of forest structure analysis [2]. The Spanish Geographic Institute (IGN) has developed the PNOA program, which serves a low point density LiDAR (0.5 points/m²) for the whole Spanish territory (~500.000 km²)

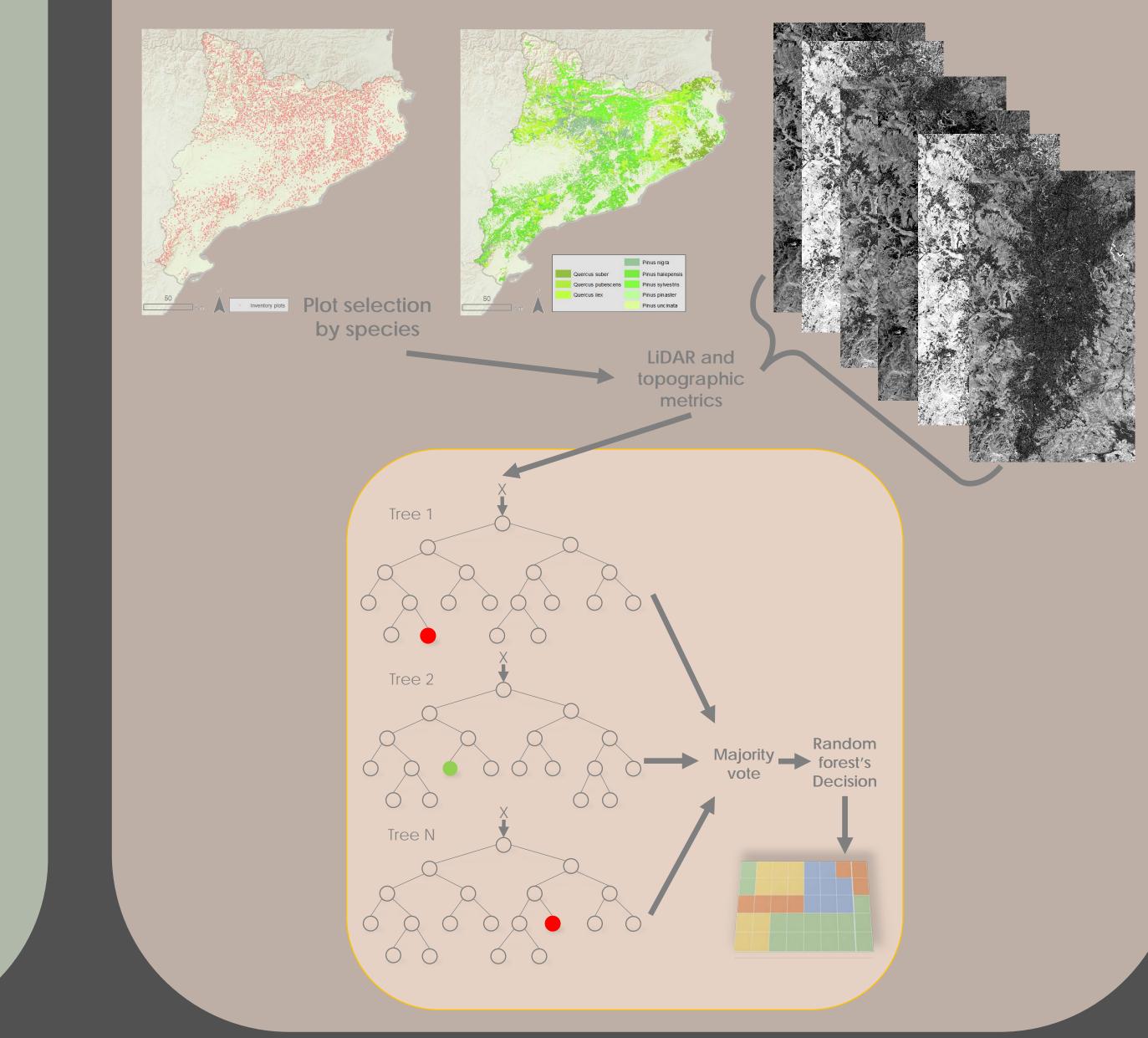
Independent Variable

Aerial Carbon from 4th Spanish Forest Inventory

$$LiDA_{Fore}$$

$$M_{height} = \frac{\sum_{i=1}^{N} x_i}{N}$$

$$SD_{height} = \sqrt{\frac{\sum_{i=1}^{N} (x_i - \mu)^2}{N}}$$


$$Kurt_{height} = \frac{\sum_{i=1}^{N} (x_i - \mu)^2}{(N - 1)\sigma^4}$$

$$Skew_{height} = \frac{\sum_{i=1}^{N} (x_i - \mu)^2}{(N - 1)\sigma^4}$$

An assessment of aerial carbon stock combining forest inventory data with LiDAR-derived canopy and topography metrics Gelabert, P.J[.] Rodrigues, M.; Ameztegui, A.; Vega-García, C. University of Lleida, Department of Agricultural and Forest Engineering, Lleida, Spain (*Correspondent author: perejoan.gelabert@udl.cat)

Methodology

Random Forest is a Machine Learning ensemble classifier that uses a multitude of decision trees to classify. The nodes of tree decision are divided using the best variables selected from a random sample.

Data

Dependent Variables

R-derived st metrics

Canopy relief ratio (CCR) = $\frac{\mu - x_{i \min}}{x_{i \max} - x_{i \min}}$

 $Canopy Cover = \frac{\sum_{i=1}^{N} r_{i first} > 0.2 m}{\sum_{i=1}^{N} r_{i first}} \times 100$

95th height percentile

Elevation

Slope

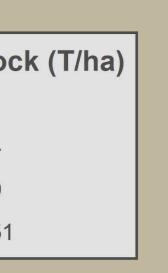
Aragór Catalunya SPAIN Carbon stock (T/ha) 0 - 17 18 - 34 35 - 50 51 - 251

Conclusions

The combination of Forest inventory data and LiDAR-based forest and topographic metrics enable modelling and spatializing carbon stock at landscape level. Random Forest regression performance supports the reliability of the models (R²>0.78). Further developments will explore carbon stock in scrubland communities as well as several improvements to measure biomass at stand level.

ACKNOWLEDGEMENTS

This work has been supported by the Ajuts UdL, Jade Plus i Fundació Bancària La Caixa [Acord 79/2018 del Consell de Govern-UdL] and LIFE CLIMARK – Forest management promotion for climate change mitigation through the design of a local market of climatic credits LIFE 16 CCM/ES/000065 (2017-2021).


REFERENCES

- els embornals a Catalunya. In: Tercer Informe sobre el Canvi Climàtic a Catalunya, Institut d'Estudis Catalans i Generalitat de Catalunya, pp.65-92.
- [4] Vilà-Cabrera, A., Espelta, J. M., Vavreda, J., & Pino, J. (2017). "New Forests" from the Twentieth Century are a

Results

FRANCE

Specie	R ²
Pinus halepensis	0,83
Pinus nigra	0,83
Pinus sylvestris	0,78
Pinus uncinata	0,82
Quercus ilex	0,83
Quercus pubescens	0,81
Quercus suber	0,80

• [1] Latham, J., Cumani, R.; Rosati, I.; Bloise, M. (2014). FAO Global Land Cover SHARE. Database Beta-Release Verion 1.0. • [2] Listopad, C. M. C. S.: Masters, R. E.: Drake, J.: Weishampel, J.: Branquinho, C. (2015). Structural diversity indices based on airborne LiDAR as ecological indicators for managing highly dynamic landscapes. Ecological Indicators, 57, 268–279 • [3] Vayreda, J.; Retana, J.; Savé, R.; Funes, I.; Sebastià, M.T.; Calvo, E.; Catalan, J.; Batalla, M.; (2016) Balanç de carboni: